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A permanent magnet (PM) synchronous machine is robustly optimized according to the paremeters defining the size and the
position of the PMs. In a deterministic setting the worst case deviation on these parameters is considered. This approach needs
first and second order derivatives. The second setting makes use of uncertainty quantification accounting for the standard deviation.
In this case only first order derivatives are needed. The PM volume is succesfully reduced and it is shown that both settings are
equivalent when applying linearization.

Index Terms—Finite element analysis, gradient methods, monte carlo methods, permanent magnet machines.

I. INTRODUCTION

THE PERMANENT MAGNETS (PMs) of a 3-phase 6-
pole PM synchronous machine (PMSM) are subjected to

optimization. The goal is to reduce the size of the PM material
while accounting for the deviations that might occur on the
parameters describing the size and the position of the PMs. In
this paper, a deterministic optimization method using gradients
is applied in order to guarantee a small number of iteration
steps. The deterministic method belongs to the class of direct
optimization methods [1].

II. MODEL

A full description of the machine can be found in [2].
The width and height of the PM is depicted by p1 and p2
respectively. The PMs are buried in the rotor at a depth p3.
These quantities should be contained in the admissable set
Pad = {p ∈ R3|G(p) ≤ 0}, where G(p) represents the
constraints on p = (p1, p2, p3). The machine is subjected to an
optimization in which the amount of PM material is minimized
while maintaining a prescribed EMF Ed and accounting for
deviations on p.

The PMSM is described by solving the magnetostatic ap-
proximation of the Maxwell equations. Using the magnetic
vector potential ~A(x, y, z,p), one has to solve the partial
differential equation (PDE)

~∇×
(
ν(p)~∇× ~A(p)

)
= ~Jsrc − ~∇× ~Hpm(p), (1)

with adequate boundary conditions. The reluctivity is de-
noted by ν(p) = ν(x, y, z,p), the source current density by
~Jsrc(x, y, z) and the PM’s source magnetic field strength by
~Hpm(x, y, z,p). The ansatz ~A(p) ≈

∑ND

j=1 aj(p)~wj(x, y) =∑ND

j=1 aj(p)Nj(x, y)/`z~ez, with ND the total number of de-
grees of freedom, ~wj(x, y) the edge shape functions related
to the nodal finite elements Nj(x, y) and `z the length of the
machine, is used. Using the Galerkin approach in the 2D planar
case leads to the system of equations Kν(p)a(p) = jsrc +
jpm(p) [3]. Kν(p) is the finite element system matrix, a(p)

are the unknowns. The right hand side depicts the discretized
right hand side of (1). Solving this system and applying the
loading method [4] enables to calculate of the EMF.

The parameters p are uncertain due to the production
process. It is assumed that p(ω) = p + δ′(ω). The stochastic
nature of a quantity is depicted by ω and p = E [p(ω)] is the
expectation value. The δ′(ω) are independently and uniformly
distributed random variables:

δ′(ω) ∼ U(δl, δu). (2)

In our numerical experiments −δl = δu = ∆. The value of ∆
is increased from 0 to 0.2 mm.

III. ROBUST OPTIMIZATION PROCEDURE

First the deterministic setting without deviations (D Opt) is
considered. Let J1 depict the cost function so that

min
p∈R3

J1(p) := p1p2 (3)

subject to the constraints G1(p,a(p)) ≤ 0. This optimiza-
tion problem can be solved by a standard method. In this
work Sequential Quadratic Programming (SQP) with damped
Broyden–Fletcher–Goldfarb–Shanno (BFGS) updates for the
Hessian approximation [6] is used.

Due to the uncertainty a worst-case robust counterpart
(D Rob 1) for (3) is introduced by considering

min
p∈R3

max
δ∈U

J1(p + δ), (4a)

subject to
max
δ∈U

G1(p + δ,a(p)) ≤ 0, (4b)

with the uncertainty set U := {δ ∈ R3 | ‖D−1δ‖∞ ≤ 1},
and D = diag(∆,∆,∆). This nested optimization problem is
hard to solve. Hence, an approximation of the max problem is
utilized. Since the deviations are small a local linearization
can be applied, see e.g. [7], so that a numerically feasible
optimization problem is obtained. For this purpose, the first



order Taylor approximations of the cost function and the
constraint are considered according to p:

J1(p + δ) ≈ J1(p) +∇pJ1(p)δ (5)

G
(i)
1 (p + δ,a(p)) ≈ G(i)

1 (p,a(p)) +∇pG
(i)
1 (p,a(p))δ, (6)

for i = 1, . . . , NG, where NG is the number of constraints.
Inserting this approximation in (4a), one obtains the linear
approximation of the robust counterpart:

min
p∈R3

J2 := J1(p) + ‖D∇pJ1(p)‖1, (7a)

subject to

G2 := G
(i)
1 (p,a(p)) + ‖D∇pG

(i)
1 (p,a(p))‖1 ≤ 0, (7b)

for i = 1, . . . , NG. The dual norm || · ||∗ is defined as

‖ · ‖∗ : Rn → R
g 7→ ‖g‖∗ := max

g∈Rn,‖δ‖≤1
g>δ.

In this particular case, one can use the property that the dual
of ‖D−1 · ‖∞ is given by ‖D · ‖1. However, since the norms
are not differentiable, this problem is not smooth. To obtain a
differentiable problem, slack variables have to be introduced
in order to obtain a smooth formulation [8]. By applying
the linearization a derivative in the cost function has been
introduced, causing the need of second order derivatives when
using the SQP algorithm for optimization.

To define a robust optimization problem with stochastic
quantities (UQ Rob Opt), the standard deviations have to be
taken into account, see e.g. [9],

min
p∈R3

J3(p(ω)) := E [J1(p(ω))] + λ std [J1(p(ω))] , (8a)

subject to

G3(p(ω),a(p(ω))) := E
[
G

(i)
1 (p(ω),a(p(ω)))

]
(8b)

+λstd
[
G

(i)
1 (p(ω),a(p(ω)))

]
≤ 0.

where λ is a weighting factor, similar to D in (2). To calculate
the stochastic quantities the sampling is done by using general-
ized polynomial chaos (gPC) and Monte Carlo (MC). For gPC
a tensor grid of 5× 5× 5 is constructed and a Gauß-Legendre
quadrature is applied [10]. For MC 5000 random samples are
generated, which leads to an error of less then 0.1% on the
expectation value of E0.

The idea of linearization used for D Rob 1 can also be
applied to the stochastic quantities used in UQ Rob Opt. One
retrieves (UQ Lin Opt)

J4(p) = E [J1(p + δ′)] + λ std[J1(p + δ′)]

≈ J1(p) + λ‖std[δ′] ◦ ∇pJ1(p)‖2, (9a)

where ◦ depicts the elementwise product. If one chooses
λ = D

std[δ′] , one obtains an expression equivalent to (7a), when
considering the 2-norm (D Rob 2). The constraints are

G4(p,a(p)) = E
[
G

(i)
1 (p + δ′,a(p + δ′))

]
+λ std

[
G

(i)
1 (p + δ′,a(p + δ′))

]
≈ G

(i)
1 (p,a(p))

+λ‖std[δ′] ◦ ∇pG
(i)
1 (p)‖2. (9b)

IV. DISCUSSION

Starting from the initial geometry [2] (p1p2 = 133 mm2

and E0 = 30.370 V), all approaches reduce the size of the PM
roughly by a factor of two while maintaining Ed. The influence
of ∆ is visualized in Fig. 1. For ∆ tending to zero all methods
converge to the result of D Opt. The numerical results for
D Rob 2 and UQ Lin Opt coincide since both approaches
are mathematically equivalent as will be discussed in the full
contribution. This indicates that using linearization for robust
optimization in the deterministic and in the stochastic setting is
equivalent. The results using robust optimization in the UQ and
deterministic setting do differ. D Rob 1 is a more pessimistic
scenario since it mitigates the worst case. Using the second
moment, more information is incorporated during optimization.
This leads to more optimistic results, because rare events are
neglected.

0 0.05 0.1 0.15 0.2
62

64

66

68

70

72

74

76

78

∆ (mm)

p
1
p

2
(m

m
2
)

 

 

UQ Rob Opt
UQ Lin Opt
D Rob 1
D Rob 2
D Opt

Fig. 1: Optimized size as a function of the deviation ∆.
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